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Abstract. The liquid Mg–Bi system exhibits strong compound formation at the ‘octet’
composition (Mg3Bi2). We present results of first-principles molecular dynamics simulations
of this alloy system at different compositions: the pure Mg and Bi liquid components, the
stoichiometric liquid, and a Mg-rich composition (Mg62Bi28). For the pure liquids, our results are
in excellent agreement with experimental diffraction data. For Mg3Bi2, a significant modification
of the characteristics of the local ordering is found w.r.t. the crystallineα-phase: the ordering in
the liquid is much more ionic. This structural modification is consistent with the structure of the
superionicβ-phase, that was reported recently by Barneset al 1994J. Phys.: Condens. Matter6
L467. Our simulations cannot reproduce the ‘reverse’ metal–nonmetal transition observed upon
melting, the computed conductivity being much larger than found in experiments. Instead, for
the Mg-rich Mg62Bi28 alloy, the calculated conductivity approaches closely to the experimental
value.

1. Introduction

For various reasons the alloys of magnesium with antimony and bismuth are intriguing from
a physical–chemical point of view. Seitz [1] characterizes the octet compound Mg3Sb2 as
a transition case with properties in between those of ionic crystals and metallic alloys. A
glance at the phase diagram reveals [2, 3] that the octet composition is the only composition
of the Mg–Sb system for which compounds (anα- and aβ-phase) are formed. They have
the narrow existence ranges characteristic of ionic phases. The liquidus [2, 3] exhibits a
sharp, cusp-like maximum at around the stoichiometric composition.

The phase diagram of the Mg–Bi system [4, 5] is very similar to that of Mg–Sb. The
maximum temperature of the liquidus is 821◦C and is found at the octet composition. There
is an α-phase up to 703◦C and aβ-phase between 703◦C and 821◦C. Only few crystal
structures are compatible with the composition ratio 2:3. Theα-phase crystallizes in the
hexagonal La2O3 structure [6]. The coordination of the Bi atoms is somewhat irregular: the
first two Mg coordination shells together contain an odd number of atoms. According to
Barneset al [7] β-Mg3Bi2 crystallizes with the Bi atoms on a bcc lattice and is a superionic
conductor with Mg2+ as the mobile ion.
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In spite of the apparent similarities between Mg3Bi2 and Mg3Sb2 the electrical
resistivities differ widely. Stepanow [8] found that solid Mg3Bi2 behaves as a good metal.
This was confirmed in a very detailed study by Grubeet al [4] and is in agreement with
band-structure calculations by Xuet al [9]. In contrast, solid Mg3Sb2 is a semiconductor
[10].

Liquid Mg3Bi2 is a classical example of a liquid semiconductor [11–13] with a
conductivity as low as 45�−1 cm−1. This is remarkable as so drastic a metal–nonmetal
transition in this direction (the solid is a metal and the liquid a semiconductor) had not
been observed before (indeed negative changes in the conductivity upon melting occur for
most NFE metals and alloys and, e.g., for Te–chalcogenide alloys, but the magnitude of
the jump is much smaller in these cases). Also liquid Mg3Sb2 is a semiconductor [14, 15].
Plotted as a function of composition the resistivities of liquid Mg–Bi and Mg–Sb exhibit
extremely sharp peaks at the octet composition. Measurements of the Darken stability
function of Mg–Bi [16, 17] confirm the formation of a very stable and well-defined liquid
octet compound.

Xu et al [9] extended the measurements of the resistivity of Mg3Bi2 beyond the
temperature range covered by Grubeet al to just above the melting point. They found
a sudden, small, decrease of the conductivity at the transition from theα- to the β-phase
and a much larger jump at the melting point. The conductivity values in between theα–β

transition temperature and the melting point correspond to metallic conductivity, but their
temperature dependence reminds one of a semiconductor with a very narrow gap. It should
be noted that due to experimental problems the actual value of the resistivity measured by
Xu et al in the liquid is considerably higher than that of [11], but this does not put in
question the general nature of the transition at the melting point.

As Mg3Sb2 is a semiconductor in both the liquid and the solid state, one expects the
Bi atoms, prone to relativistic effects, to be responsible for the peculiar behaviour of solid
Mg3Bi2. Indeed, a comparative study of the band structures of Mg3Bi2 and Mg3Sb2 shows
that relativistic effects tend to increase metallicity, but cannot account for the whole effect
[9]. It has also been conjectured that the liquid state is more favourable for the development
of an ionic gap than the solid state, as the irregular coordination in the latter may result in
a small Madelung energy. Interestingly, although the electronegativity difference between
Mg and Bi is not large, diffraction data [18, 19] indicate a strong, Coulomb-type, ordering
in the liquid, particularly at the octet composition.

In the present paper an effort is made to achieve a better understanding of the liquid
phase of the Mg–Bi alloy system by means of simulations where the underlying electronic
structure of the system is taken into account. To this end we employ the first-principles
molecular dynamics (FPMD) approach introduced by Car and Parrinello [20] which has
already been successfully applied to the study of numerous liquid and amorphous systems
(for a recent review, see [21]). A distinctive feature of the FPMD is that forces between
the atoms are calculated directly from the instantaneous electronic ground state. This
ground state is calculated via density functional theory in the local density approximation
(LDA).

This paper is organized as follows. After presenting the details of the simulation
(section 2), in section 3 we deal with the pure Mg and Bi liquids. The atomic and electronic
structures of the stoichiometric Mg3Bi2 alloy are examined in section 4, while the Mg-
rich alloy Mg62Bi28 is discussed briefly in section 5. Concluding remarks are given in
section 6.
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2. Calculations

Calculations were carried out using a periodically repeated simple cubic box containing
90 atoms (e.g. 36 Bi and 54 Mg atoms, in the case of Mg3Bi2) [22], except for the case
of pure liquid Bi, for which a box with 60 atoms was used. All our simulations were
performed at constant volume, which was chosen so as to match the experimental density
at the simulation temperature. The electronic states were sampled at the0 point only,
and expanded in plane waves with a kinetic energy cut-off of 12 Ryd. The cut-off for
the pseudocharge density was 24 Ryd. Norm-conserving pseudopotentials (NCPP) were
used to describe electron–ion interactions. All the final results presented in the following
sections were obtained using NCPP constructed by Filippetti and Bachelet (FP) [23], so as
to satisfy, besides norm conservation, also the criterion of ‘chemical hardness’ (see [24]).
These pseudopotentials have a [Ne] and a [Xe]4f145d10 core for Mg and Bi respectively,
and incorporate ‘non-linear core corrections’ [25]. The core densities were smoothed by
us within a radiusrsmooth (1.60 au for Mg and 1.98 au for Bi). In the calculations the
pseudopotentials were used in the separable form of Kleinman and Bylander (see [26, 27]).

The equations of motion were integrated using the scheme of preconditioning of the
wave-function masses according to [28], with a time step between 13 and 15 au, depending
on the particular system. During the runs the Kohn–Sham wave functions were kept close
to the ground state usually by means of a Nosé thermostat [29–31]. This thermostat
compensates for the heat flow, coming from the ionic degrees of freedom, into the fictitious
electronic degrees of freedom. To compensate for the drain of energy from the ionic degrees
of freedom two Nośe thermostats were employed acting on Mg and Bi ions separately.

In the simulation of the Mg–Bi alloys, the large ratio of the masses of Bi (208.9804 amu)
and Mg (24.305 amu) causes the Bi atoms to move rather slowly w.r.t. to the Mg atoms.
Consequently very long simulation (CPU) times are needed to obtain reliable statistics.
To get around this problem we have chosen to set the Bi mass equal to 30 amu. As a
consequence time-dependent properties cannot be calculated reliably any longer, but time-
independent properties are not affected.

The constant of motion, i.e. the sum of all energies, which should remain constant
during the runs, exhibited quite large fluctuations (about 1/20th of the fluctuations of the
potential energy) when the FP potential for Bi was used. This turned out to be related to an
insufficient smoothing of the core pseudocharge density of Bi. However, since two parallel
runs for pure liquid Bi, one with Bachelet–Hamann–Schlüter (BHS) [53] and the other with
FP pseudopotentials, were found to yield substantially identical results (see below), we
believe that these fluctuations are not harmful.

Some tests of the pseudopotentials were carried out. These are briefly discussed in the
next few paragraphs. A more detailed description can be found in [32]. First we considered
the Mg dimer. With 12 Ryd cut-off a ground-state equilibrium distance of 6.50 au and
ground-state frequency of 102 cm−1 are obtained. The experimental values are 7.35 au and
51 cm−1 [33]. The significant underestimation of the distance is known to be related to an
inadequate description of the van der Waals interaction between the closed Mg 3s shells by
the LDA (see, e.g., [34], for a detailed discussion). However, for larger, i.e. more metallic,
systems the van der Waals interaction is less important and a better performance of the
LDA is to be expected. Indeed, for bulk hcp Mg Chou and Cohen [35], employing an LDA
method, find the lattice constant to agree with experiment within 2%.

To test the Mg pseudopotential in an ionic environment the linear MgCl2 molecule
was considered. For Cl a standard BHS pseudopotential was used. For Mg, apart from
the FP pseudopotential, tests with the BHS potentials were also carried out. With a p
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reference the BHS pseudopotential performs remarkably well, the calculated Mg–Cl distance
being d = 4.11 au, against an experimental value of 4.12 au [54]. However, with a d
reference, which is supposed to provide a more accurate description, the Mg–Cl distance is
underestimated by about 8%. With the FP pseudopotential the agreement with experiment
is reasonable also with a d reference:d = 3.99 au. For this reason this potential was chosen
for our final runs.

Also we performed tests on the Bi pseudopotential, and considered in particular the Bi
dimer. The experimental ground-state equilibrium distance and frequency are 5.03 au and
173 cm−1 respectively. The corresponding computed quantities with a 12 Ryd cut-off are
4.98 au and 165 cm−1 respectively [33]. Unfortunately there is not sufficient experimental
data available on binary Bi clusters with singlet ground states to allow for a meaningful test
of the Bi potential in an ionic environment.

2.1. Details of the simulations

2.1.1. Liquid Mg3Bi2. The liquid Mg3Bi2 sample consists of 54 Mg and 36 Bi atoms in
a periodically repeated simple cubic box. Experimentally the density of Mg3Bi2 at 1105 K
is 5.465 g cm−2 [36]. This yields a length of the cubic box of 26.26 au. Assuming a linear
expansion of the volume with temperature, at 1123 K—the temperature of the neutron
scattering experiment by Weberet al [18]—a length of 26.41 au is obtained. This is the
box dimension that we used in our simulations at 1150 K. To justify the procedure described,
notice that in [37] the temperature dependence of the volume is found to be almost linear for
the related liquid Mg–Sb. Unfortunately the Mg3Sb2 composition could not be measured
by the authors of [37].

The simulation was started from a slightly deformed lattice with the structure ofα-
Mg3Bi2. We use the conventions from [9] (see, e.g., figure 8 thereof). The 120◦ angle
between the lines connecting the Mg(1) in thexy plane was slightly changed until a larger
orthorhombic unit cell containing 3× 3 formula units fitted on the lattice. We took two
layers (in the direction of thez axis) of these orthorhombic units and expanded them, by
different factors forx, y andz direction, to arrive at a cubic cell with the proper density.

Initially we used BHS potentials with a p and a d reference for Mg and Bi respectively.
Starting from a temperature close to 2000 K, we slowly cooled the system to a temperature
of 1150 K in about 20 000 steps (time step: 13.5 au). At 1150 K the Nosé particles masses
were 1 104 000 and 736 000 au for Mg and Bi respectively. The electronic Nosé mass was
48 au. Next we continued for 2680 steps with the FP potential for Mg, but still with the
BHS potential for Bi. From this point a d reference was used for both Bi and Mg. The
agreement with experiment got worse and we decided to use the FP potentials for both Bi
and Mg. We continued for another 17 300 steps. Of these the last 10 000 steps were used
to obtain the definitive results.

2.1.2. Liquid Mg, Bi, and Mg62Bi28. Shorter simulations of pure liquid Mg, liquid Bi and
the liquid alloy Mg62Bi28 were carried out also.

For liquid Mg, the initial configuration was obtained from a configuration taken from
the Mg3Bi2 simulation. All of the Bi were replaced by Mg and the positions were
homogeneously rescaled to fit into a box of (13.43Å)3, corresponding to the liquid density
at 1000 K that we obtained by interpolating between the densities given by Waseda [38].
The 90-atom sample was heated to about 1400 K and then cooled down to a temperature of
1000 K. The equilibration period lasted for 2.9 ps (8100 steps) . The production run lasted
for 1.8 ps (5000 steps).
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For liquid Bi we took the positions from the same Mg3Bi2 configuration as for liquid Mg.
Since a simulation with 90 atoms, each having five valence electrons, is computationally
quite demanding, we reduced the number of atoms by a cut through the simulation box. We
put the remaining 60 atoms in a cubic box of (12.76Å)3, corresponding to the density at
573 K according to Waseda [38]. We kept an ionic mass of 30 amu. Whenever below we
refer to times for the monatomic liquid Bi system, we correct for this artificial atomic mass,
i.e. the time is multiplied by a factor

√
209/30 such as to refer to atoms with 209 amu

mass. We started equilibration of the liquid at 1000 K. Originally we intended to carry out
the simulation near the experimental melting point of 544 K [3] and therefore chose our
simulation box to match the experimental density at 573 K. However, we found that carrying
out the simulation at a temperature lower than 1000 K would slow down the diffusion of the
atoms so much that the computational effort would become very large. Thus we have finally
chosen a simulation temperature of 1000 K. The error this introduces in the length of our
box is only 2%. We started 2750 steps (2.28 ps) using the standard BHS potential. Then we
switched to the FP potential, i.e. the potential that we also used to obtain our results for liquid
Mg3Bi2. Equilibration was continued for another 1500 steps with the FP potential. The final
averages were obtained from the last 5000 steps (4.15 ps). As a test we also continued the
run with the BHS potential for a while and obtained the structure factor and pair distribution
function as an average over only 3000 steps. The results obtained with the FP and standard
BHS potentials were found to be substantially identical within the limited statics.

For the short simulation of the liquid Mg62Bi28 alloy we took a configuration from
the simulation of Mg3Bi2, subsequently replaced some Bi by Mg atoms and rescaled the
positions such as to fit into a box of (13.78̊A)3. This corresponds to the experimental
density at 1100 K [36].

After a short equilibration, averages were calculated over a run of 8000 steps (time step:
13.5 au), where the ionic thermostats operated at a temperature of 1100 K.

3. The pure Mg and Bi liquids

In this section we discuss briefly some properties of the pure Mg and Bi liquids. A more
detailed description can be found in [32], while a discussion focusing in particular on
electron–ion correlation functions will be presented elsewhere.

3.1. Mg

Figure 1(a) depicts the Mg structure factor and compares it to experiment at 953 K [38]. In
figure 1(b) the comparison in real space is made. Agreement between theory and experiment
is good. Integratingg(r) to 4.3 Å a coordination number of 12.2 is extracted , a value
typical for a hard-sphere-like system. Also the bond-angle distribution (not shown) looks
rather hard-sphere-like. This picture is further confirmed by the velocity autocorrelation
function (not shown) which shows a clear ‘caging’ effect. We omit a discussion of the
electronic properties since the small size of the periodically repeated cell in conjunction
with a sampling at the0 point only does not allow for a realistic description of, e.g., the
density of states of a nearly-free-electron (NFE) metal like Mg.

3.2. Bi

Arsenic, antimony and bismuth all crystallize in a rhombohedral structure [39], i.e. a Peierls
distortion of a simple cubic lattice with two atoms per unit cell. The Peierls distortion
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Figure 1. The static structure factor (a) and pair distribution function (b) of liquid Mg obtained
by simulation at 1000 K (solid line) compared to experiment at 953 K (dashed line) [38].

causes a splitting of the first coordination shell into two shells containing three atoms each.
An atom, together with its three nearest neighbours, forms a flattened tetrahedron. This
Peierls distortion is weaker for the heavier elements: for As the two nearest coordination
shells are located at 2.9 and 3.5Å, whereas for Bi they are at 3.1 and 3.5Å.

The issue of the existence of a structure equivalent to a Peierls distortion in the liquid
state was addressed by Hafner and Jank [40] for liquid As, Sb and Bi and by Li [41] for
liquid As. Li found by means of an FPMD simulation that liquid As still exhibits structural
features in common with the solid. These suggest that a distortion very similar to a Peierls
distortion should occur in the liquid: for instance, Li found that liquid As is essentially a
threefold-coordinated liquid with bond angles similar to those of the rhombohedral crystal.
Our results indicate that for liquid Bi there still are similarities with the rhombohedral lattice,
but that these are much less pronounced than for liquid As.

In figure 2(a) we compare the structure factor as obtained from the simulation at 1000 K
to the experimental structure factors by Knollet al [42] and Waseda [38] at 923 and 1073 K
respectively. In the region of the main peak our data are rather noisy. A small shift of
this peak w.r.t. experiment is observed. The overall agreement between experiment and
simulation is good.

In figure 2(b) the pair distribution functiong(r) is compared to the experimental results
[42, 38]. The position of the nearest-neighbour peak ing(r) is well reproduced. The
height of this peak, however, is larger than the height of the experimental peak. A similar
situation arose for liquid As, where Li [41] showed that the discrepancy could be removed
by accounting for the finiteq-range accessible to experiment. This was accomplished by
broadening the simulation result with the experimental resolution according to a prescription
by Etheringtonet al [43]. We used the same procedure for Bi. From figure 2(c) it is apparent
that for Bi the discrepancy in the height of the main peak has almost completely vanished.
By integration ofg(r) the following coordination numbers are extracted: 2.6, 4.8, 6.2 and
7.9 for cut-offs of 3.25, 3.5, 3.75 and 4̊A respectively. From these values and figure 2 it
clearly transpires that the number of atoms within the first coordination shell is larger than
three. In figure 2(b) theg(r) as obtained from our short test with the BHS potential is also
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Figure 2. The structure factor (a) and radial distribution function ((b), (c)) of liquid Bi. Solid
line: simulation (1000 K); short-dash line: experiment by Waseda [38] (1073 K); circles:
experiment by Knollet al [42] at (923 K); long-dash line: short test calculation with the BHS
pseudopotential (g(r) only). Note that (b) shows the ‘raw’ simulation data, while (c) shows the
simulation data broadened with the resolution of Knoll’s experiment (12Å−1) according to a
prescription by Etheringtonet al [43]. The broadening was carried out in real space by means
of a convolution.

plotted. It is essentially the same as theg(r) obtained with the FP pseudopotential.
Figure 3 depicts the bond-angle distribution. For decreasing interatomic distances it

changes significantly and becomes quite similar to the bond-angle distribution of the crystal.
The electronic density of states (DOS), obtained by averaging over three configurations

sampled at 2000 step intervals, has a clear metallic character (see figure 4). The angular
momentum decomposition is obtained by projecting on spherical harmonics in a sphere
with radius 3 au. The s–p splitting is evident. The liquid-state DOS was also calculated
by Hafner and Jank [40]. Their DOS and ours are similar, the s part being a little broader
in our case. The DC conductivity extrapolated fromσ(ω) is about 3 m�−1 cm−1. σ(ω) is
calculated from the Kubo–Greenwood formula [44] with the electrons distributed according
to a Fermi-distribution at 0 K:

σ(ω, {RI }) = 2πe2

3m2ω�

occ∑
m

unocc∑
n

∑
α

|〈ψm|p̂α|ψn〉|2δ(En − Em − h̄ω) (1)

wherem ande are electron mass and charge respectively,� is the MD cell volume,p̂α is the
α-component of the momentum operator andoccandunoccdenote occupied and unoccupied
eigenstates respectively. The experimental DC conductivity at 1173 K is 6.5 m�−1 cm−1

[11]. In calculations employing density functional theory usually the width of the gap is
underestimated and as a result the conductivity is overestimated. In this case, instead, the
conductivity is underestimated. This may probably be explained by the neglect of spin–orbit
interactions. For rhombohedral Bi, Gonzeet al [45] (see in particular figure 9 thereof) find
a less metallic DOS in the case where the spin–orbit interaction is switched off.

Hafner and Jank [40] have simulated liquid As, Sb and Bi with pair potentials based on
second-order perturbation theory. They proposed that the liquid structure is determined by
the diameter of the atomic core and the wavelength and amplitude of the Friedel oscillation
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Figure 3. The calculated bond-angle distribution for liquid Bi. Various cut-off lengths (rc)
to define a bond have been employed. The vertical bars are proportional to the bond-angle
distribution of rhombohedral Bi [39] within the first two coordination shells at 3.1 and 3.5Å.
Both shells contain three atoms. The third coordination shell is at 4.5Å. The first shell is
responsible for the large peak just beyond 90◦.

in the pair potential. They argued that the combined effect of these may stabilize an open
structure, thus giving a real-space description of an effect that in the crystal is caused
by the Peierls distortion. In their view the relativistic effects cause the amplitude of the
Friedel oscillations to decrease, which explains the trend towards a more close-packed liquid
structure going from As to Bi. The same trend in the liquid structure is seen from the first-
principles simulations when we compare the results on liquid As obtained by Li [41] to
those on liquid Bi presented here. A simulation closer to the experimental Bi melting point
of 544 K might show, however, more similarities with the rhombohedral crystal.

4. Liquid Mg 3Bi2

4.1. Structural properties

Figure 5(a) shows the static structure factor, according to the Faber–Ziman definition,
of liquid Mg3Bi2, obtained from experiment [18] and from our simulation. The overall
agreement is quite good. There are some small differences—e.g., the shoulder in front of
the main peak is lower in the simulation.

The comparison between experiment and simulation in real space is presented in
figure 5(b). HereD(r) = 4πrρ0(g(r) − 1), whereρ0 is the number density andg(r) the
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Figure 4. The electronic density of states for liquid Bi. Dotted line: s; dashed line: p; solid
line: total.

Figure 5. The static structure factor according to the Faber–Ziman definition (a) andD(r) (b)
of liquid Mg3Bi2. Continuous line: simulation at 1150 K; dotted line: experiment at 1123 K
from [18].

conventional pair distribution function, is plotted. The height and left-hand side of the main
peak follow the experiment very well. The main peak, however, is too broad and the small
hump just beyond the main peak in the experiment is not reproduced. This discrepancy
cannot be traced back to a specific feature of the partial pair distribution functions (gij ,
figure 6). It might originate from eithergBiBi , gMgMg or a complicated mix of all three
partial gij .

The partial structure factors (Sij , Ashcroft–Langreth definition) are displayed in figure 7.
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Figure 6. Partial pair distribution functions of liquid Mg3Bi2. The vertical bars are proportional
to thegij of the crystallineα-phase.

Figure 7. Partial structure factors of liquid Mg3Bi2 according to the Ashcroft–Langreth
definition. SBiBi − 1: continuous line;SMgBi : dotted line;SMgMg: dashed line.

There are clear features of an ionic ordering. The wiggles inSBiBi andSMgMg decay much
more rapidly than those inSMgBi. In direct space this is mirrored by the sharpness of the
main peak ofgMgBi. This peak is located at 3̊A. Since the position of the main peaks of
g(r) andS(q) (rP andqP) are approximately related byrP = 7.7/qP [46], the main peak of
SMgBi is expected to occur at approximately 7.7/3 = 2.57. Indeed the main peak inSMgBi

is found close to 2.5. However, a negative prepeak occurs at 1.5Å−1, which we consider
to be the strongest indication for an ionic ordering. The low degree of structure inSMgMg
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and, even more so, inSBiBi is clearly mirrored by the absence of sharp peaks ingMgMg

andgBiBi . Also SBiBi andSMgMg have peaks at≈ 1.5 Å−1. In the case ofSMgMg this peak
can also be interpreted as a prepeak: the first maximum ingMgMg, at 3.3Å, corresponds to
the main peak inSMgMg which is located at approximately 2.4̊A−1. For SBiBi the peak at
1.5 Å−1 also indicates a superstructure. However, it corresponds with the main, and first,
top of gBiBi : 7.7/1.5 = 5.1 Å. The peaks at 1.5̊A−1 interfere in such a way that their only
remnant in the total neutronS(q) is the shoulder on the left-hand side of the main peak of
the totalS(q), clearly visible in the experimental results and marginally in MD results.

Whereas thegBiBi and gMgMg have their main peaks at rather different interatomic
separations, the shortest Mg–Mg and Bi–Bi distances are approximately the same (figure 6).
MoreovergBiBi has a shoulder wheregMgMg has its main maximum. So the conclusion that
Bi and Mg are of similar size is justified, supporting the interpretation of the main peak
of gBiBi as a superstructure feature. The first coordination shell around a Bi atom should
contain mainly Mg atoms.

The differences between Mg–Mg and Bi–Bi correlations are of course largely determined
by the concentration difference and, consequently, the charge difference. Most clearly
the consequences, and the differences w.r.t. the crystallineα-phase, are recognized by
considering the partial running coordination numbersaij (r), i.e. the number of atoms of
speciesi that on average are within a shell of radiusr around an atom of typej (figure 8).
From theaij (r) it transpires that the ‘shell’ of atoms around a Bi atom consists predominantly
of Mg atoms. Certainly below 4̊A the ratio of the number of Mg atoms around a Bi atom
to the number of Bi atoms around a Bi atom is much larger than 3/2, the number to be
expected for a homogeneous mixture of neutral, equally sized, particles.

Next we compare our liquid with the crystal structure of theα-phase [6]. The height of
the ‘spikes’ in figure 6 is proportional to the crystallinegij (r). In particular when comparing
these to the liquid stategBiBi andgMgBi it emerges that the crystalline structure does not fit
very well to the liquid-state structure. In theα-phase the Bi atoms approach closely. When
going to the liquid phase, the Bi atoms move apart (clearly illustrated byaBiBi ), consistently
with the ionic nature of the liquid.

Some of the bond-angle distributions (b) are presented in figure 9. The shape of thegij

(figure 6), and even more so the shape of theaij (figure 8) clearly show that a definition of a
cut-off on the bond length, especially for Bi–Bi bonds, is problematic. We rather arbitrarily
took a value of 4Å. Together with the liquid-state bond-angle distributions, those for the
α-phase are also shown. In comparing the distributions of the two phases one should keep
in mind the cos(θ ) background that, on purely statistical grounds, is present in the liquid.
The occurrence of a peak at 60◦ in bMgMgMg shows that in the liquid state the Mg atoms
are much more closely packed.bBiBiBi indicates a slight preference for the 90◦ angle also
found in the crystal. We checked that decreasing the cut-off to 3.5Å does not bring out
this feature more clearly. For the 5̊A cut-off it is washed out already.

4.2. Electronic properties

Figure 10 shows the electronic density of states (DOS) obtained from our simulation. The
DOS was obtained as an average over five configurations at 2000 step intervals. The self-
consistent potential (Hartree and exchange–correlation terms) from the liquid simulation
was used to construct a proportion of the unoccupied eigenstates. In turn, these were used
to calculate the DOS and the frequency-dependent conductivity. The DOS does not have a
gap at the Fermi level; it even looks rather metallic. We come back to this point below.

The Bi s levels are clearly split off from the Bi p levels. This is a situation similar to
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Figure 8. Partialaij (r): the number of atoms of speciesi that on average are within a shell of
radiusr around an atom of typej . The dotted ‘step-like’ functions are theaij of the α-phase.
The crystalline data are taken from [6, 9].

that encountered in, e.g., liquid Pb where scalar relativistic effects push down the s levels
[49]. The same was observed in the band-structure calculations of crystallineα-Mg3Bi2 by
Xu et al [9] where the mass–velocity and Darwin terms push down the s levels from above
−10 eV to below−10 eV. Comparing to the scalar relativistic band structure in [9] we
see that the main effect of going from the crystal to the liquid phase is to ‘broaden’ these
low-lying bands such that they come closer to the Mg and Bi p levels.

The projections to obtain an angular momentum decomposition of the DOS were carried
out in spheres of 3 au radius centred on the nuclei. If we renormalize the DOS in these
spheres we find that on average almost one electron has been transferred to a Bi atom. Of
course this number is very approximate, but since Mg and Bi are of similar size it clearly
demonstrates the direction and order of magnitude of the charge transfer, lending support
to the ionic picture.



Molecular dynamics simulation of liquid Mg3Bi2 1891

Figure 9. Bi–Bi–Bi and Mg–Mg–Mg bond-angle distributions for liquid Mg3Bi2. For the solid
lines the cut-offs are 4̊A. The dotted line pertains to a cut-off of 5̊A on Bi–Bi distances. The
heights of the vertical lines are proportional to the bond-angle distribution of theα-phase, the
cut-offs being also 4̊A.

σ(ω) was calculated from the Kubo–Greenwood formula [44], with the electrons
distributed according to a Fermi distribution at a temperature of 0 K (equation (1)). The
extrapolation to zero frequency (≈ 2 m�−1 cm−1) should be considered with care because
of the poor statistical quality (only a few transitions) and the extremely narrow energy range
where temperature effects become important (kBoltzT = 0.1 eV at 1150 K). However, it is
apparent that we significantly overestimate the DC conductivity—that from the best of the
available experiments is found to be a mere 45�−1 cm−1.

Looking for possible reasons for this discrepancy between simulation and experiment,
we consider first the experimental side. The resistivity maximum is reached in an extremely
narrow composition range (see, e.g., figure 7 of [9]). Problems because of an insufficient
chemical definitions of the sample may arise.

Next we consider some possibilities from the theoretical side. (i) It is not plausible that
the quality of the pseudopotentials is insufficient. From the comparison with diffraction
experiments it has become clear that they describe a system that rather closely approaches
the structure of the true liquid. (ii) We used scalar relativistic pseudopotentials; theL · S
term was ignored. For crystallineα-Mg3Bi2 [9] shows that inclusion of spin–orbit coupling
enhances the metallic behaviour. So inclusion of theL · S term will probably enhance
the conductivity, rather than decreasing it. (iii) This leaves us with the most obvious
source of trouble: density functional theory, which generally tends to underestimate the
energy separation between occupied and unoccupied states, even when the local density
approximation is relaxed [51].

5. The Mg62Bi28 alloy

In figure 12 the neutron structure factor andD(r), as obtained from the simulation of
Mg62Bi28 (i.e. Mg0.689Bi0.311), are compared to the experimental results by Weberet al [18]
for the Mg70Bi30 alloy at 980 K. The overall agreement for theS(q) is satisfactory; only
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Figure 10. The electronic density of states of liquid Mg3Bi2, obtained as an average over five
configurations at 2000 step intervals. The upper panel displays the total DOS. The lower panels
display a decomposition into chemical species and angular momentum where the decomposition
was obtained by projecting on spherical waves of the appropriate symmetry in a sphere with a
radius of 3 au.

at larger wavenumbers is some shift apparent. The main peak ofD(r) is slightly shifted
w.r.t. experiment. The hump inD(r) at ≈ 4.7 Å is not reproduced in the simulation. In
the simulation the next hump develops into a broad maximum at 6Å.

Comparing the simulation results at the two alloy compositions, we notice that they are
much more similar than the experimental results. Within the noise, the only discernible
difference in the calculatedS(q) is the height of the main peak, which is slightly larger for
the Mg-richest alloy. On comparison of the theoreticalD(r) curves the only clear difference
is that for the Mg-rich alloy the maximum is slightly more pronounced (but does not shift).
In the experimental data the same trend is observed, but also other peaks vanish or come
into existence.

From the partial pair distribution functions (not shown), we find that some Mg atoms
have moved into the first coordination shell of Mg at the expense of some Bi atoms. The
number of atoms around a Bi atom decreased by about 0.5 (for a wide range of cut-offs)
whereas the maximum increase of the number of atoms around a Mg atom is about 0.7.
This change in coordination number is not so pronounced as that inferred by Weberet al
from their experimental data. The prepeak inSMgMg (not shown) is reduced to a very weak
shoulder on the side of the main peak (which becomes a little higher). The absolute height
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Figure 11. The frequency-dependent conductivity. The solid line pertains to Mg3Bi2 and is
calculated as an average over five independent configurations. The solid circle corresponds to
the measured DC conductivity of Mg3Bi2 from [11]. The dash–dotted line pertains to Mg62Bi28

and was obtained as an average over four configurations.

Figure 12. Neutron and x-ray structure factors (a) andD(r) (b) of liquid Mg62Bi28. Solid lines:
simulation (Mg62Bi28); dotted lines: experiment (Mg7Bi3), [18].

of the prepeak ofSMgBi is a little reduced. The bond-angle distributions are very similar to
those of the Mg3Bi2 alloy.
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The trend in the structure when going from Mg3Bi2 to Mg62Bi28 is not surprising: the
number of Bi atoms is reduced w.r.t. the number of Mg atoms, so Mg moves into the first
coordination shell of Mg at the expense of Bi. This causes a reduction of the size of the
SMgMg and SMgBi prepeaks, without really affecting the typical length scale of the liquid
superstructure. However, the subtle changes in the experimentalS(q) and D(r) are not
found in the simulation.

Weberet al also carried out x-ray diffraction measurements on the Mg7Bi3 alloy. In
figure 12(a) we compare their x-ray structure factor and the structure factor obtained by
taking the appropriate mixture of the partial structure factors from our simulation and the
atomic form factors (taken from [50]). Note that the height of the first peak is somewhat
underestimated. This peak consists of a positive Bi–Bi and a negative Mg–Bi contribution.
(The contributions from the Mg–Mg partial are negligibly small). The wiggles beyond the
first peak originate almost entirely from the Mg–Bi partial, whereas the noise comes from
the unstructured Bi–Bi partial.

The electronic density of states of Mg62Bi28 (not shown) is very similar in character to
the DOS of the Mg3Bi2 liquid, i.e. there is no gap atEFermi. The conductivity as a function
of ω is shown in figure 11. It was obtained by averaging over four configurations only, and
thus the quality of the statistics is not very good, especially for the lower frequencies. The
extrapolated DC value is similar to that obtained for the Mg3Bi2 alloy. Its value is in between
the experimental conductivities at the Mg0.74Bi0.26 and the Mg0.62Bi0.38 compositions, which
are respectively≈ 3.0 and 1.5 m�−1 cm−1 [11–13]. Therefore comparison with experiment
is satisfactory at this composition.

6. Concluding remarks

Our results show that liquid Mg3Bi2 essentially conforms to the simple ionic behaviour to
be expected for an octet compound. Mg–Mg close contacts occur quite frequently, simply
because Mg is the most abundant species. However, even Bi atoms sometimes penetrate the
first coordination shell of a Bi atom. Therefore, in line with the moderate electronegativity
difference (0.7 on the Miedema scale [52]), the ionicity is not very large. Essentially it
amounts to a screening of the species with highest absolute charge (Bi) by the Mg ions.
A physical transfer of charge equal to the formal transfer of charge (Mg2+

3 Bi3−
2 ) seems, in

view of all the structural data presented, not very realistic. This is in accordance with our
rough estimate of about one electron on average being transferred to a Bi atom.

In [9] it was speculated that the unusual sevenfold Mg–Bi coordination, to which the
crystalline system is forced by composition and lattice periodicity, could change in the
liquid state into a more regular coordination that allows an ionic gap to be formed. From
the shape of the partialgij in figure 5(b) it follows that coordination numbers are difficult to
determine. Therefore we used the running coordination numbers (figure 8) to demonstrate
that the Mg3Bi2 liquid-state structure is not just a trivial modification of the solid-state
structure but that distances change, in particular those between Bi atoms, to allow for a
more ionic ordering. The structural modifications that we find going from theα-phase to
the liquid are consistent with the structure of the superionicβ-phase [7] where also an
increase in Bi–Bi distance (4.6̊A) is observed.

We could not give a good description of the electronic behaviour near the Fermi level
for the Mg3Bi2 liquid. However, the resistivity of the Mg62Bi28 alloy is in good agreement
with experiment. Thus in our calculation the opening of a narrow gap, in a very narrow
composition range around the stoichiometric composition, is not realized. Like in numerous
other cases the most obvious possible reason for this is the use of density functional theory.
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However, this does not rule out the possibility of the occurrence of another mechanism
which is beyond the approximations of our calculations.
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